NanoOptics team

Group leader : Alberto BRAMATI
Laboratoire Kastler Brossel
Quantum electrodynamics (QED) is a major research topic in modern Physics dealing with the coupling of a single emitter to a mode of the electromagnetic field. Today, it is possible to build a system where the fundamental properties of a single emitter are dramatically modified by this coupling. Various emitters have been studied from individual atoms or ions to solid states systems as epitaxial quantum dots or semiconductor nanocrystals. Applications range from secure communication and random number generation to biological imaging. Fundamental tests of quantum theory are also of concern, with the possibility to study strong light–matter interaction.

In order for quantum communication to become realistic with an implementation at a large scale, it is absolutely critical to be able to miniaturize the elements that will be parts of the future networks. In optics, miniaturization of photonics devices, widely called nanophotonics, is a very active research topic.
During the last decade, multiple Nano-optics and nanophotonics devices that outperform their traditional counterparts (faster operations, lower energy consumption…) have been demonstrated.

The new challenging task that we are now facing is to couple different devices at a nanometric scale in order to surpass their individual properties. These hybrid systems will then allow us to observe new physics effects and to develop innovative devices.
In the NanoOptics Team, we investigate original approaches for coupling optical fibers or more generally waveguides to various solid-state quantum emitters (semiconductor nanocrystals, nanodiamonds…).

The NanoOptics Team works on 3 main project :