Anti-coalescence of bosons on a lossy beam splitter

Benjamin Vest,1 Marie-Christine Dheur,1 Éloïse Devaux,2 Alexandre Baron,3 Emmanuel Rousseau,4 Jean-Paul Hugonin,5 Jean-Jacques Greffet,1 Gaétan Messin,1 François Marquier1*

Two-boson interference, a fundamentally quantum effect, has been extensively studied with photons through the Hong-Ou-Mandel effect and observed with guided plasmons. Using two freely propagating surface plasmon polaritons (SPPs) interfering on a lossy beam splitter, we show that the presence of loss enables us to modify the reflection and transmission factors of the beam splitter, thus revealing quantum interference paths that do not exist in a lossless configuration. We investigate the two-plasmon interference on beam splitters with different sets of reflection and transmission factors. Through coincidence-detection measurements, we observe either coalescence or anti-coalescence of SPPs. The results show that losses can be viewed as a degree of freedom to control quantum processes.

Surface plasmon polaritons (SPPs) are collective oscillations of electrons that propagate along a metal-dielectric interface. Several groups have reproduced fundamental quantum optics experiments with such surface plasmons instead of photons, as both are bosons. Observations of single-plasmon states (2, 3), wave-particle duality (4, 5), preservation of entanglement of photons in plasmon-assisted transmission (6–8), and more recently, two-plasmon interference have been reported in a large variety of plasmonic systems (3, 9–12). The ability to generate pairs of indistinguishable single SPPs is an important requirement for potential quantum applications (13–15).

When dealing with two indistinguishable particles, the correlations at the output of a beam splitter are associated to the bosonic or fermionic character of the particles (16); that is, to the symmetry of the two-particle state \(|\psi_{\text{spatial}}\rangle \) = \(|a\rangle |b\rangle \pm |b\rangle |a\rangle \), where \(a \) and \(b \) are the output ports of the beam splitter and the numbers 1 and 2 label the particles. At first glance, the observation of coalescence appears to be a signature of the bosonic nature of SPPs or photons. However, it has been pointed out that anti-coalescence can be observed with photons when using particular input states (17, 18). This behavior stems from the introduction of the polarization degrees of freedom in the wave function: The global photonic state \(|\psi_{\text{phot}}\rangle = |\psi_{\text{spatial}}\rangle \otimes |\psi_{\text{polar}}\rangle \) remains symmetric, but both the polarization state \(|\psi_{\text{polar}}\rangle \) and the spatial state \(|\psi_{\text{spatial}}\rangle \) are antisymmetric. The polarization state is the entangled antisymmetric Bell state \(|\psi_{\text{Ba}}\rangle = \frac{1}{\sqrt{2}} (|H\rangle |V\rangle - |V\rangle |H\rangle) \), where \(H \) (resp. \(V \)) is the horizontal (resp. vertical) state of polarization. Hence, if a nonpolarizing beam splitter is illuminated with the global photonic state \(|\psi_{\text{phot}}\rangle \) and if the detectors are not sensitive to the polarization, the setup operates only on the spatial part of the state and output correlations reveal anti-coalescence, similar to the fermionic case. This property has been used as a method of analyzing Bell states (18). These ideas have been further used to mimic fermions with bosons (19). We also note that anti-coalescence of photons has been observed when preparing photon pairs in specific input states of the device (20, 21) or in the context of a quantum eraser experiment, which is also based on the interplay between the spatial state and the polarization state (22). In all these works, it was assumed that the beam splitter is unitary, and therefore, that the phase difference between the reflection and the transmission factor is \(\pi \) rad.

As previously shown (23, 24), it is possible to change this phase difference when considering losses in the beam splitter. Indeed, it is shown that the presence of losses (scattering or absorption on the beam splitter) relaxes constraints on the reflection and transmission factors, allowing the control of their relative phase. Barnett et al. (23) and Jeffers (24) predicted, in particular, novel effects, including coherent absorption of single-photon and NOON states (25, 26). Although losses are detrimental for the observation of squeezed states, they can thus be seen as a degree of freedom in the design of plasmonic devices, revealing new quantum interference scenarios.

Here we report the observation of two-plasmon quantum interference between two freely propagating, nonguided SPPs interfering on lossy plasmonic beam splitters. We designed several plasmonic beam splitters with different sets of reflection and transmission factors that are used in a plasmonic version of the Hong-Ou-Mandel (HOM) experiment (27), in which the input state is a symmetric spatial state and has no internal degrees of freedom: The polarization of the SPPs is fixed. Depending on the plasmonic beam splitters, coincidence measurements lead either to a HOM-like dip—the signature of plasmonic coalescence—or a HOM peak that we associate to plasmonic anti-coalescence. In the latter case, the anti-coalescence is fundamentally related to the beam splitter itself, and to its phase properties (28). This effect is a reminder that the bosonic nature of particles, here surface plasmons, does not imply bunching at a beam splitter.

Our experimental setup is based on a source of photon pairs (Fig. 1). The photons of a given pair are sent to two photon-to-SPP converters, located at the surface of a plasmonic test platform. The photon number statistics are conserved when coupling the photonic modes to a plasmonic mode on such a device (29) so that pairs of incident single-photons are converted into two single SPPs. These SPPs freely propagate on the metallic surface toward the two input arms of a plasmonic beam splitter. After the beam splitter, the SPPs that reach the output of the platform are converted back to photons to be detected by single-photon counting modules (SPCMs).

The plasmonic platform consists of several elements that are etched on a 300-nm-thick gold film on top of a silica substrate, on a total 40-µm by 40-µm footprint (Fig. 2). The input channels of the plasmonic platform are made of two uni-directional launchers (designated L1 and L2). These asymmetric 11-groove gratings have been designed to efficiently couple a normally incident Gaussian mode into directional SPPs (30). The SPPs generated by each launcher then freely propagate and recombine on the surface plasmon beam splitter (SPBS). It is made of two identical grooves in the metallic surface (Fig. 2C), oriented at 45° with respect to the propagation direction.

Table 1. Dimensions of the plasmonic platform samples under study, as measured by a scanning electron microscope (width \(w \) and metal gap \(g \)) and atomic force microscope (groove depth \(h \)). Variables \(w \), \(g \), and \(h \) are described in Fig. 2C. The fourth row reports expected values for the reflection and transmission factors \(r \) and \(t \) based on the numerical simulations of the target design. The last row reports estimations of the relative phase between the reflection and transmission coefficients after characterization. Numbers between parentheses are the target dimensions and relative phase of the devices, as designed by numerical simulations.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sample I</th>
<th>Sample II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w) (nm)</td>
<td>171 (180)</td>
<td>289 (320)</td>
</tr>
<tr>
<td>(g) (nm)</td>
<td>145 (140)</td>
<td>250 (280)</td>
</tr>
<tr>
<td>(h) (nm)</td>
<td>110 (140)</td>
<td>150 (140)</td>
</tr>
<tr>
<td>(r</td>
<td>h)</td>
<td>(0.42/0.42)</td>
</tr>
<tr>
<td>(2\theta_{|})</td>
<td>170° (180°)</td>
<td>10° (0°)</td>
</tr>
</tbody>
</table>
of waves launched by L1 and L2. The succession of metal and air allows a scattering process that generates both a transmitted and a reflected SPP (31), but this also introduces losses. The complex reflection and transmission factors \(r = |r|e^{i\theta} \) and \(t = |t|e^{i\phi} \) of the SPBS are functions of the geometrical parameters of the SPBS (Fig. 2C). In particular, it is possible to control the phase difference \(\phi_{rt} = \phi_t - \phi_r \). This phase control will affect the interferences. The SPPs then propagate toward two large out-coupling strip slits. They are decoupled into photons propagating in the glass substrate on the rear of the platform.

For a lossless balanced beam splitter, energy conservation and unitary transformation of modes at the interface imposes \(t = \pm ir \) and \(|t| = |r| = \frac{1}{\sqrt{2}} \) so that the phase difference between \(r \) and \(t \) is \(\phi_{rt} = \pm 90^\circ \). When placed at the output of a Mach-Zehnder interferometer, the two outputs of the beam splitter deliver two sinusoidal interference signals that display a phase shift \(2\phi_{rt} = \pm 180^\circ \). It follows that a maximum on a channel corresponds to a minimum on the other channel, as expected from energy conservation arguments. The situation is different in our experiment; a single SPP is transmitted with probability \(|t|^2 \) and reflected with a probability \(|r|^2 \), but can be absorbed or scattered with a probability \(1 - |t|^2 - |r|^2 \). For a balanced SPBS, in the presence of losses, \(r \) and \(t \) are constrained by the following inequality (13)

\[
|t \pm r|^2 \leq 1
\]

where the equality holds only if there are no losses. The previous relation releases constraints on \(2\phi_{rt} \). In other words, losses can here be considered as a new degree of freedom. It is therefore possible to design several beam splitters where the amplitudes of \(r \) and \(t \) and the relative phase \(\phi_{rt} \) can be modified. As a direct consequence, interference fringes from both outputs of the SPBS can be found experiencing an arbitrary phase shift.

Controlling those properties of the SPBS strongly affects the detection of events by the two SPCMs. It has been shown (23) that the coincidence-detection probability, i.e., the probability for one particle pair to have its two particles emerging from separate outputs of the beam splitter, can be expressed as

\[
P_{\text{cl}}(1a, 1b) = |t|^4 + |r|^4 + 2\Re(t^2r^2)I
\]

where \(2\Re(t^2r^2) = t^2r^2 + t^2r^2 \), \(a \) and \(b \) label the output ports of the beam splitter, and \(I \) is an overlap integral between the two particles’ wave packets. For nonoverlapping wave packets, \(I = 0 \), and the previous relation reduces to

\[
P_{\text{cl}}(1a, 1b) = |t|^4 + |r|^4
\]

The particles impinging on the SPBS behave like two independent classical particles, as indicated by the subscript cl. For an optimal overlap between the particles \(I = 1 \), the coincidence probability can be written as

\[
P_{\text{qu}}(1a, 1b) = |t|^2 + |r|^2 = P_{\text{cl}}(1a, 1b) + 2\Re(t^2r^2)
\]

where the subscript qu denotes the presence of the quantum interference term \(2\Re(t^2r^2) \). We now consider two cases. If \(t = \pm ir \), the probability \(P_{\text{qu}} \) reaches zero. This is the same antibunching result that is obtained for a nonlossy
beam splitter (29). This is the so-called HOM dip in the correlation function. If we now consider \(t = \pi \) with \(|t| = |r| = \frac{\pi}{2} \), we get \(P_{\text{co}}(1_1, 1_2) = 2P_{\text{cl}}(1_1, 1_2) \). Here we expect a peak in the correlation function.

The plasmonic chips were designed by solving the electrodynamics equations with an in-house code based on the aperiodic Fourier modal method (32). Numerical simulations allowed us to find the geometrical dimensions of the beam splitter required for the two previous configurations \(t = \pm \pi \) or \(t = \pi \) with \(|t| = |r| = \frac{\pi}{3} \), respectively—that is, 25% of the incident energy is transmitted, 25% is reflected, and the amount of nonradiative losses on the beam splitters is 50%. We fabricated two corresponding beam splitters designated samples I and II, respectively. The features of each beam splitter are reported in Table 1. We characterized the phase difference between \(r \) and \(t \) by an interferometric method. We used the plasmonic beam splitter as the output beam splitter of a Mach-Zehnder interferometer. We split an 806-nm continuous-wave laser beam in this interferometer and recorded the interference fringes at both output ports of the setup when increasing the relative delay \(\Delta \text{HOM} \). We then measured the average phase difference between the two signals that were recorded on the two output channels to get \(\phi_\text{rH} \).

Figure 3 is a plot of the coincidence rate with respect to the HOM delay \(\Delta \text{HOM} \) between both arms when sample I was used. The inset is a plot of the sinusoidal fringes obtained at the outputs of the beam splitter when illuminating with a laser at 806 nm. It is seen that the fringes are in phase opposition, confirming the \(\pm 90^\circ \) phase shift between \(r \) and \(t \). The plot displays an HOM-like dip, with a 61% contrast, unambiguously in the quantum regime beyond the 50% limit (33).

This result is analogous to the coalescence effect observed in two-photon quantum interference on a lossless beam splitter and confirms the bosonic behavior of a single plasmon, here achieved with freely propagating, nonguided SPPs on a gold surface.

We then move to the next beam splitter, sample II. The inset of Fig. 4 shows that classical fringes at the output are in phase. In this case, orthogonality is not preserved between output modes of the SPBS. The two-particle quantum interference experiment is now characterized by an HOM peak, an increase in coincidence rate with respect to the classical case. The contrast is around 70%, again in a clear quantum regime. The peak illustrates that when combining on this beam splitter, SPPs tend to emerge from two different outputs. This anti-coalescence effect highlights the fundamental role of the SPBS in quantum interference.

We have observed experimentally the coalescence of surface plasmons at a lossy beam splitter when \(t = \pm \pi \), thereby reproducing the results expected for bosons with a lossless beam splitter. However, in the particular case \(t = \pi \) with \(|t| = |r| = \frac{\pi}{3} \) we have shown that the dip is converted into an anti-coalescence peak. This feature is usually associated with fermions when using nonlossy beam splitters (16) because there cannot be two fermions in the same output path. Although our experiment exhibits a correlation peak, it differs from previous observations of boson anti-coalescence with antisymmetric states mimicking fermions (17, 18). We have derived the output states repartition for both situations (33), and it is shown that they are different. Another interesting consequence of the particular phase of the SPBS predicted in (23) is nonlinear absorption: That is, only two photons or none can be absorbed, so that the probability of observing a single photon is zero.

The observation of a correlation peak that is not related to a fermionic behavior raises the question of the effect of a lossy beam splitter in the fermionic case. We show in (33) that the phase property of the SPBS converts the usual fermionic correlation peak into a correlation dip. The dip corresponds to no particle in one path resulting from interference, and the absorption of one particle, required by the Pauli exclusion principle. Hence, we find that one and only one fermion is always absorbed, at odds with the bosonic nonlinear absorption. This quantum coherent absorption of fermions is reminiscent of the (classical) coherent total absorption for photons (25, 34). To observe this effect, we may use two photons in a product state of a polarization antisymmetric Bell state and a spatial antisymmetric state that mimics a fermionic state. We predict an output with one photon in one arm and one photon absorbed (33), in marked contrast with the bosonic case where this probability was zero.

The results of our study illustrate that the output of a beam splitter illuminated by two particles depends not only on their quantum nature but also on the symmetry of the spatial part of the two-particle state.
and on the phase of the beam splitter reflection and transmission factors. As previously shown (23, 24), the presence of losses adds a new degree of freedom in the quantum systems.

REFERENCES AND NOTES

23. Materials and methods and further calculations are available as supplementary materials.

ACKNOWLEDGMENTS

We are grateful to T. W. Ebbesen, P. Lalanne, and J.-C. Rodier for their crucial role in this project. We also acknowledge F. Cadiz and N. Schilder for their help in the beginning of this study, as well as L. Jacobowitz, A. Browaeys, C. Westbrook, and P. Grangier for fruitful discussions. The research was supported by a DGA-MRIS (Direction Générale de l’Armement, Mission Recherche et Innovation Scientifique) scholarship, by RTRA (Réseau Thématique de Recherche Avancée) Triangle de la Physique, by the SAFRAN-IGS chair on Ultimate Photonics, and by a public grant overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (reference: ANR-10-LABX-0035, Labex NanoSaclay). J.-J.G. acknowledges the support of Institut Universitaire de France. All data needed to evaluate the conclusions in this study are presented in the paper and/or in the supplementary materials. Additional data related to this study may be requested from F.M. (francois.marquier@institutoptique.fr).

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/356/6345/1373/suppl/DC1

Materials and Methods

Supplementary Text

Reference (35)

8 February 2017; accepted 11 May 2017

Published online 25 May 2017

10.1126/science.aam9353
Anti-coalescence of bosons on a lossy beam splitter
Benjamin Vest, Marie-Christine Dheur, Éloïse Devaux, Alexandre Baron, Emmanuel Rousseau, Jean-Paul Hugonin, Jean-Jacques Greffet, Gaétan Messin and François Marquier

Science 356 (6345), 1373-1376.
DOI: 10.1126/science.aam9353 originally published online May 25, 2017

To bunch or to antibunch
Particles of matter can be classed as either as bosons or fermions. Their subsequent behavior in terms of their physical properties and interactions depends on which quantum statistics they obey. Photons, for instance, are bosons and tend to bunch. Electrons are fermions and tend to antibunch. Vest et al. show that surface plasmon polaritons, a hybrid excitation of light and electrons, can exhibit both kinds of behavior (see the Perspective by Faccio). By tuning the level of loss in their system, bunching and antibunching of interfering plasmons can be seen.

Science, this issue p. 1373; see also p. 1336

ARTICLE TOOLS http://science.sciencemag.org/content/356/6345/1373
SUPPLEMENTARY MATERIALS http://science.sciencemag.org/content/suppl/2017/05/24/science.aam9353.DC1
RELATED CONTENT http://science.sciencemag.org/content/sci/356/6345/1336.full
REFERENCES This article cites 34 articles, 3 of which you can access for free http://science.sciencemag.org/content/356/6345/1373#BIBL
PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title Science is a registered trademark of AAAS.